SSI 263A Phoneme Speech Synthesizer # Data Sheet #### DESCRIPTION The SSI 263A is a versatile, high-quality, phonemebased speech synthesizer circuit contained in a single monolithic CMOS integrated circuit. It is designed to produce an audio output of unlimited vocabulary, music and sound effects at an extremely low data input rate. Speech is synthesized by combining phonemes, the building blocks of speech, in an appropriate sequence. The SSI 263A contains five eight-bit registers that allow software control of speech rate, pitch, pitch movement rate, amplitude, articulation rate, vocal tract filter response, and phoneme selection and duration. #### **FEATURES** - Single low-power CMOS integrated circuit - . 5 Volt supply - Extremely low data rate - 8-bit bus compatible with selectable handshaking modes - Non-dedicated speech, ideal for text-to-speech programming - Programmable and hard powerdown/reset mode - Switched-capacitor-filter technology # SSI 263A Operation Description This short description is intended to provide SSI 263A feature and capability information only. Refer to the SSI 263A USERS GUIDE for complete information on application and phonetic programming. ### The Production of Speech To produce different speech phonemes (sounds) the SSI 263A uses a model of the human vocal tract. Within the device this analog tract is modeled with five cascaded programmable low pass filter sections. The filter sections are programmed internally by a digital controller. Either a glottal (pitch) or a pseudo-random noise source is used to excite the vocal tract, depending on whether a voiced or non-voiced phoneme is selected. During speech production the phonemes will typically last between 25 and 100 mS. ## The Speech Attribute Registers Speech is produced by programming speech attribute (characteristic) data into five eight-bit registers. These internal registers allow selection of phonemes and speech characteristics. Refer to the Register Input Formats for the functional allocations. #### Device Response to Attribute Register Data The SSI 263A has two general classes of attribute data: "control" data (speech rate, filter frequency, phoneme articulation rate, phoneme duration, immediate inflection setting, and inflection movement rate) and "target" data (phoneme selection, audio amplitude, and transitioned inflection). The SSI 263A responds immediately upon loading "control" data; upon loading "target" data the device will begin to move towards that target at the prescribed transition rates. This fully internal linear transitioning between target values, done in a manner as is found in normal speech, is a key factor in reducing control data rate without sacrificing speech quality. ## **Attribute Register Writing** The eight bit data bus D7-D0 loads the particular attribute register selected by the three bit address bus RS2-RS0. To write the data, R/W (Read/Write), CS0 (Chip Select 0), and CS1 pins must first be in the 0,1,0 state, respectively. The data is then written when at least one of these pins changes state. Refer to the Write Timing Diagram. Writing is accomplished by changing preferably CS0 or CS1. Following device power up, nominal values should be loaded into the attribute registers as described below. #### Approximate Data Transfer Rate For speech production using the SSI 263A, the actual data rate depends on the amount of speech attribute manipulation. For example, the production of monotonic speech, where phoneme and duration are the only attribute manipulations, requires a data rate less than 100 bits-per-second. A higher data rate of about 500 bits-per-second is required for high quality speech due to the associated full attribute manipulation. #### Selectable Operation Modes The state of the Duration/Phoeme Register bits DR1 and DR0 determine the operating mode of the device when the Control bit (CTL) is changed from a logic one to a logic zero. The four modes of operation include choice of timing response between "frame" or "phoneme" timing (as explained below), transitioned or immediate inflection response, and setting the A/R (Acknowledge/Request Not) pin active or disabled. Refer to the Mode Selection Chart. #### **Phoneme Selection** The SSI 263A can produce the 64 phonemes listed on the Phoneme Chart. Bits P5-P0 are used for phoneme selection. The relative phoneme duration is set by bits DR1 and DR0. ## **Phoneme Articulation Adjustment** A particular phoneme is produced by the combination of vocal-tract low-pass filter settings, excitation source type, and source amplitude. When a new phoneme is selected, the device performs a linear transition to the new set of characteristics. The rate of this transition is controlled by the articulation setting, bits TR2-TR0. This rate is relative in that articulation is not affected by speech rate bits R3-R0. A typical articulation register setting is "5". #### Programming Inflection (Pitch) When the SSI 263A is in the mode of immediate inflection, bits I11-I0 provide immediate adjustment with seven octaves of pitch on an even tempered scale. With the device in the transitioned inflection mode, bits I10-I6 select the target pitch and bits I5-I3 determine the inflection rate of change. Bits I11, I2, I1, and I0 always provide immediate adjustment. A typical value used for speech production is 90Hz where: I = decimal equivalent of Inflection Register setting #### Filter Frequency Setting Data bits FF7-FF0 set the clock frequency for the switched-capacitor vocal tract filters. This determines overall filter frequency response. Inflection pitch is not affected by these bits. Typically this is set to give a clock frequency of about 20KHz (see formula below), but may be manipulated to fine-tune speech quality or to change "voice type"; bass, baritone, etc. FF = decimal equivalent to the Filter Frequency Register setting. ## Speech Rate Rate of speech is controlled by bits R3-R0, the Speech Rate Register. In Frame Timing Mode new attribute data is requested at the end of a "frame" where: | - | 4096 X (16-R) | |---|---------------| | | XCK frequency | | | = | R = decimal equivalent of Rate Register setting In the Phoneme Timing Mode the frame duration is modified by the phoneme duration bits DR1 and DR0 where: Phoneme Duration = (Frame Duration) X (4-D) D = decimal equivalent of Duration Register setting All internal attribute transitioning is performed relative to the Speech Rate Register setting. Speech rate does not effect inflection or filter frequency. A typical rate setting is hexadecimal "A". ### **Amplitude Adjustment** The overall Audio Output level is set with register bits A3-A0. Since each phoneme has a preset amplitude relative to other phonemes, it is not necessary to program the amplitude of each phoneme; however, amplitude changes may be used to enhance the speech quality and add emphasis. Amplitude is transitioned linearly at rate dependent on the phoneme duration setting. A typical amplitude setting is hexadecimal "C". #### Control Bit and Power Down Mode Setting the Control bit (CTL) to a logic one puts the device into Power Down mode, a sort of "standby". This bit is also set high when the PD/RST pin is brought low and also upon power up. The Power Down mode turns off the excitation sources and analog circuits to reduce power consumption, but maintains the present register settings. Upon a Control bit logic one-to-zero transition, the present settings of DR1 and DR0 determine the operation mode as described above. #### Register Reading . Device pin D7 becomes an output, as the inverted state of A/\overline{R} , when the device is put into Read (R/\overline{W} is a logic 1 and the chip is selected, $\overline{CS1} = 0$, CS0 = 1). Refer to the Read Timing Diagram. The register address bits are ignored. #### **Time Base** Many different time bases may be utilized (see external clock input specifications). It is desirable to establish a stable crystal controlled time base from 800 to 1000KHz when DIV2 is set low, or twice the frequency when DIV2 is set high. A good time base can be easily accomplished with an inexpensive colorburst 3.5795 MHz crystal in conjunction with a divide-by-two circuit. The actual device timing and output frequencies are directly related to the time base frequency used. ## Microprocessor Interfacing Either the A/R line, or D7 as an output, are used as an interrupt to indicate when the duration of a frame or phoneme has been exceeded. No detectable degradation to speech quality results when several milliseconds occur between data request and load. # PHONEME CHART | Hex Code* | Phoneme Symbol | Example Word (or Usage) | |--|--|--------------------------| | 00 | PA | (pause) | | 01 | E | MEET | | 02 | E1- | BENT | | 03 | Υ | BEFORE | | 04 | YI | YEAR | | 05 | AY | PLEASE | | 06 | IE | ANY | | 07 | | SIX | | 08 | A | MADE | | 09 | Al e | CARE | | 0A | EH | NEST | | 0B | EH1 | BELT | | 0C | AE | DAD | | 0D | AE1 | AFTER | | 0E | AH | GOT | | 0F | AH1 | FATHER | | 10 | AW | OFFICE | | 11 | 0 | STORE | | 12 | OU | BOAT | | 13 | 00 | LOOK | | 14 | IU | YOU | | 15 | IU1 | COULD | | 16 | U | TUNE | | 17 | U1 | CARTOON | | 18 | UH | WONDER | | 19 | UH1 | | | 1A | The state of s | LOVE | | 1B | UH2 | WHAT | | | UH3 | NUT | | 1C | ER | BIRD | | 1D | R | ROOF | | 1E | R1 | RUG | | 1F | R2 | MUTTER (German) | | 20 | L. L. | LIFT | | 21 | L1 | PLAY | | 22 | LF | FALL (final) | | 23 | W | WATER | | 24 | В | <u>B</u> AG | | 25 | D | PAID | | 26 | KV | TAG (glottal stop) | | 27 | Р | PEN | | 28 | T | TART | | 29 | K | KIT | | 2A | HV | (hold vocal) | | 2B | HVC | (hold vocal closure) | | 2C | HF | HEART | | 2D | HFC | (hold fricative closure) | | 2E | HN | (hold nasal) | | 2F | Z | ZERO | | 30 | S | SAME | | 31 | J | MEASURE | | 32 | SCH | SHIP | | 33 | V | VERY | | 34 | F | FOUR | | 35 | THV | THERE | | 36 | TH | WITH | | 37 | M | MORE | | 38 | N | NINE | | 39 | NG | | | 3A | | RANG MARCHEN (Cormon | | 3B | :A | MARCHEN (German | | and the same of th | :OH | LOWE (French) | | 3C | :U | FUNF (German) | | 3D | :UH | MENU (French) | | 3E | E2 | BITTE (German) | ^{*}Note — Hex codes shown with DR0, DR1 = 0 (longest Duration) ## PIN ASSIGNMENT DESCRIPTIONS | Pin No. | Symbol | Active
Level | Description | |---------|--------|-----------------|---| | 1 | AO | | Analog Audio Output biased
@ VDD/2 requires an
external audio amp for
speaker drive | | 2 | AGND | | Analog Ground | | 3 | TP1 | | Do not use | | 4 | A/R | | Acknowledge/Request Not — open collector output changes from high to low level after phoneme is generated. May be used as an interrupt request for new phoneme data. (See Pin 17 also.) | | 5 | TP2 | | Do not use | | 6 | RS2 | | Register Select Input – used
to select one of five interna
registers in conjunction with
RS1 and RS0 | | 7 | RS1 | | Register Select (See pin 6) | | 8 | RS0 | | Register Select (See pin 6) | | 9 | D0 | | LSB of 8-bit data bus — input only | | 10 | D1 | | Data Input (only) | | 11 | D2 | | Data Input (only) | | 12 | DGND | | Digital Ground | | 13 | D3 | BARRE | Data Input (only) | | Pin No. | Symbol | Active
Level | Description | |---------|--------|-----------------|---| | 14 | D4 | | Data Input (only) | | 15 | D5 | | Data Input (only) | | 16 | D6 | FA N.F | Data Input (only) | | 17 | D7 | | MSB of 8-bit data bus. Bi-
directional, inverse of pin 4
when read is high | | 18 | PD/RST | Low | Power Down Control Input —
Silences audio output and
retains DC bias without
disturbing register contents.
Disables A/R output. | | 19 | CS0 | High | Chip Select Input | | 20 | CS1 | Low | Chip Select Input | | 21 | R/W | | Read/Write Control Input — Write is active low for loading internal registers. Read is active high but enables D7 only. | | 22 | XCK | | Clock Input (≈11 or 2 MHz) | | 23 | DIV2 | High | Clock Divide by Two — used when external clock is ≃ 2 MHz | | 24 | VDD | | Positive Voltage Supply | ## **REGISTER INPUT FORMATS** | Register Address Register Name Bus Input Bit Position | | | | tion | | | | | | | | |---|-----|-----|--|------|-----|----|----|-----|----|----|----| | RS2 | RS1 | RS0 | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | LO | LO | LO | Duration/Phoneme (DR/P) | DR1 | DR0 | P5 | P4 | P3 | P2 | P1 | P0 | | LO | LO | Н | Inflection (I) | 110 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | | LO | Н | LO | Rate/Inflection (R/I) | R3 | R2 | R1 | R0 | 111 | 12 | 11 | 10 | | LO | н | н | Control/Articulation/Amplitude (C/A/A) | CTL | T2 | T1 | TO | А3 | A2 | A1 | A0 | | HI | X | X | Filter Frequency (F) | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 | DR1, DR0 . . Define the phoneme duration. P5 - P0 . . . Address the phoneme required. I11 - I0 Define inflection target frequencies and rate of change. R3 - R0 ... Define the rate or speed of speech. CTL Define the mode of A/R response in conjunction with DR1 and DR0. Also directly set by PD/RST. T2—T0....Define the rate of movement of the formant position for articulation purposes. A3 - A0 . . . Define the amplitude of the output audio. F7 - F0 ... Define the frequency of all vocal tract # WRITE TIMING DIAGRAM ## **READ TIMING DIAGRAM** *Valid data latched on first rise or fall of R/W, CS0 or CS1 into inactive. # **Timing Characteristics** $(V_{DD} = 4.5 \text{ to } 5.5 \text{ Volts}, TA = -40 \text{ to } +85 \text{ deg. C})$ | Item | Symbol | Limits | | Units. | |-----------------------|--------|-------------|----------|--------| | | | Min. | Max. | | | Data Setup Time | TS | 120** | Teles of | nsec | | Data Hold Time | TH | 10** | | nsec | | Strobe Width | TWS | 200 | | nsec | | Read/Write Cycle Time | TRW | 2.25* | | μsec | | Rise/Fall Time | TE | | 100 | nsec | | D7 Output Access Time | TACC | | 180 | nsec | | D7 Output Hold Time | THR | Part Inches | 180 | nsec | Notes: * Based on color burst frequency. ## MODE SELECTION CHART | DR1 | DR0 | 'CTL' BIT | Function | |-----|-----|--------------------|--| | н | н | HI - LO | A/R active; phoneme timing response; transitioned inflection (most commonly used mode) | | HI | LO | HI-LO | A/R active; phoneme timing response; immediate inflection | | LO | н | HI-LO | A/R active; frame timing response; immediate inflection | | LO | LO | HI-LO | Disables A/R output only; does not change previous A/R response | # **ABSOLUTE MAXIMUM RATINGS** | Item | Symbol | Limit | Units | |------------------------|----------------------------------|-------------------------------|-------| | Supply Voltage | V _{DD} -V _{SS} | 7.0 | ٧ | | Input Voltage | VIN | -0.5 to V _{DD} + 0.5 | ٧ | | D.C. Current at Inputs | INM | ± 1.0 | mA | | Storage Temperature | TS | -55 to + 125 | °C | | Operating Temperature | TA | -40 to +85 | °C | | Power Dissipation | Pd | 500 | mW | ^{**} Timing relative to deselect by either CS0, CS1, or R/W changing. Description **Electrical Characteristics** Conditions Unless otherwise specified, 4.5 \leq V_{DD} \leq 5.5; —40 deg. C \leq TA \leq 85 deg. C; 1.50MHz \leq XCK frequency \leq 2.0MHz, when XCK/2 = logic 1 or 0.75MHz \leq XCK frequency \leq 1.0MHz, when XCK/2 = logic 0 Min. Тур. Max. Units | POWER SUPPLY | | -46 (4) (8) | | | 100 | | |---|--|------------------------|---|----------------------|-----------------------|-------| | Supply Current PD/RST = 1, CTL = 0 | | | | 8 | 20 | mA | | Supply Current P | D/RST = 0, CTL = 1 | | a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7/ | 18 | mA | | AUDIO OUTPUT | | | | 0 | | | | | W phoneme
L = 50Kohm to GND through 1 | μF cap. | 0.28VDD | 0.37VDD | 0.50VDD | Vpp | | DC Output Offset | | | 0.5VDD | 0.6VDD | Q.7VDD | ٧ | | Resistive Loading A | C coupled to AO to GND | | 10 | | | Kohm | | Capacitive Loading T | o GND to ensure Stable A | | | | 100 | pF | | Description | Conditions | Symbol | Min | Тур | Max | Units | | BUS CONTROL INPUTS, DA | TA INPUTS (RS0, RS1, RS2, C | S0, CS1, D0 | -D7 PD/RS1 |) | | | | Input High Voltage | | VIH | Vss + 2.4 | | V _{DD} + 0.3 | VDC | | Input Low Voltage | | VIL | -0.3 | | + 0.8 | VDC | | Input Leakage Current | V _{IN} = 0 to V _{DD} | IIN | | | 5 | μΑ | | Input Capacitance | V _{IN} = 0 T _A = 25 °C
measured at f = 1.0MHz | CIN | | | 10 | pF | | Input Capacitance, D7 Input | | CIN(D7) | | | 20 | pF | | Input Current, D7 in
TRI-State "OFF" State | V _{IN} = 0.4 to 2.4 V | I _{IN} (TS) | | 2.0 | 5.0 | μΑ | | D7 OUTPUT | | | | | | | | D7 Output Low Voltage | I _{Load} = 0.4 mA into D7 | V _{OL} (D7) | | | 0.4 | VDC | | D7 Output High Voltage | $I_{Load} = 205 \mu\text{A}$ out of D7 | VOH(D7) | | V _{DD} -2.0 | 100 | VDC | | A/R OUTPUT | | | te Dr | - | | | | Output Low Voltage | $I_L = 3.2 \text{ mA into A/}\overline{R}$ | IOL(A/R) | | | 0.4 | VDC | | Output High Leakage Current | V _{Out} = 0.0 to V _{DD} | IL(A/R) | | | 10 | μΑ | | Output Capacitance | V _{Out} = 0 VDC T _{AMB} = 25 °C f = 1.0 MHz | C _{Out} (A/R) | | 15 | pF | | | DIV2 INPUT | | | | | HILL | | | Input Low Voltage | | V _{IL} (DIV2) | -0.3 | | .2 V _{DD} | ٧ | | Input High Voltage | | V _{IH} (DIV2) | .8V _{DD} | | V _{DD} + 0.3 | ٧ | | Input Leakage | V _{IN} = 0 to V _{DD} | | | | 5 | μΑ | | Description | Conditions | Symbol | Min. | Тур. | Max. | Units. | |--------------------|-----------------------------------|----------------------|-------------|-----------|-----------------------|--------| | XCLK | THE STATE OF STREET | | Total Carre | m iss | | | | Input Low Voltage | | V _{IH} (IC) | -0.3 | | + 0.8 | ٧ | | Input High Voltage | | V _{IH} (IC) | 2.4 | | V _{DD} + 0.3 | ٧ | | Input Current | $V_{IN} = 0.0 \text{ to } V_{DD}$ | I _{IN} (C) | | a Printer | 5 | μΑ | | Input Capacitance | | CIN(C) | | | 10 | pF | | Duty Cycle | | D(XCLK) | 0.4 | | 0.6 | | # TYPICAL MICROPROCESSOR IMPLEMENTATION